Foto Simon Hagmeyer

Mechanical and Systems Engineering Dr.-Ing. Simon Hagmeyer

Simon.Hagmeyer[at]hs-esslingen.de

Functions

Mitglied der Wissenschaftskommission

subjects

Condition monitoring and diagnostics

Prognostics and Health Management (PHM)

Machine learning

Reliability engineering

consultation hours

Upon prior arrangement

vita

Since November 2023: Data Scientist Reliability at Carl Zeiss SMT GmbH

Since November 2017: Research assistant at the Faculty of Machines and Systems (formerly Mechatronics and Electrical Engineering)

2025: Doctorate degree (Dr.-Ing.) from the University of Stuttgart

2017: Graduated as Master of Science in Mechatronics at Reutlingen University

2015: Bachelor of Engineering in Mechatronics at Reutlingen University

publications

Mauthe, F.; Hagmeyer, S.; Zeiler, P. (2025). Holistic Simulation Model of the Temporal Degradation of Rolling Bearings. Proceedings of the 35th European Safety and Reliability Conference and the 33rd Society for Risk Analysis Europe Conference, 15.06. – 19.06.2025, Stavanger, Norway, DOI: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P8028-cd

Mauthe, F.; Hagmeyer, S.; Zeiler, P. (2025). Ganzheitliches Modell für die Simulation der Degradation von Wälzlagern. 32. Fachtagung Technische Zuverlässigkeit 2025, 09.-10.04.2025, Nürtingen, VDI-Berichte 2448, ISBN: 978-3-18-092448-9

Hagmeyer, S.; Zeiler, P. (2023).Verwendung von Kenntnissen über den Degradationsprozess beim Training eines künstlichen neuronalen Netzes zur Steigerung der Vorhersagegenauigkeit einer Prognose der verbleibenden nutzbaren Lebensdauer. 31. Fachtagung Technische Zuverlässigkeit 2023, 26.-27.04.2023, Nürtingen, VDI-Berichte 2409, ISBN: 978-3-18-092409-0, S. 203-218.

Hagmeyer, S.; Zeiler, P. (2023).A Comparative Study on Methods for Fusing Data-Driven and Physics-Based Models for Hybrid Remaining Useful Life Prediction of Air Filters. IEEE Access, Vol. 11, pp. 35737 35753, DOI: 10.1109/ACCESS.2023.3265722

Hagmeyer, S.; Zeiler, P.;  Huber, M. (2022). On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science. Proceedings of the PHM Society European Conference, 7, DOI: 10.36001/phme.2022.v7i1.3352

Hagmeyer, S.; Mauthe, F.; Zeiler, P. (2021). Creation of Publicly Available Data Sets for Prognostics and Diagnostics Addressing Data Scenarios Relevant to Industrial Applications. International Journal of Prognostics and Health Management, 12 (2), DOI: 10.36001/ijphm.2021.v12i2.3087 

Hagmeyer, S.; Zeiler, P. (2020). Calculation of the Prediction Interval for Negative Correlation Learning via Delta Method. Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference, DOI: 10.3850/978-981-14-8593-0_4266-cd

Hönig, M.; Hagmeyer, S.; Zeiler, P. (2019). Enhancing remaining useful lifetime prediction by an advanced ensemble method adapted to the specific characteristics of prognostics and health management. Proceedings of the 29th European Safety and Reliability Conference, DOI: 10.3850/978-981-11-2724-3_0204-cd

Hagmeyer, S.; Hönig, M.; Zeiler, P. (2019). Kombination mehrerer Prognoseergebnisse zur verbesserten Ermittlung der verbleibenden nutzbaren Lebensdauer. 29. Fachtagung Technische Zuverlässigkeit 2019, 07.-08.05.2019, Nürtingen, VDI-Berichte 2345, ISBN 978-3-18-092345-1, S. 43-54.

more information

Institute for Technical Reliability and Prognostics (IZP), Prof. Dr.-Ing. Zeiler

apply

Interested? Find out more! about our degree programmes