ALT + + Schriftgröße wechseln
ALT + / Kontrast wechseln
ALT + Q Schnellzugriff
ALT + P Headerleiste
ALT + M Hauptmenü
ALT + U Links in der Fußzeile
ALT + G Sitemap
ALT + O Suche
ALT + I Inhalt
ALT + K Kontakt unten
ESC Einstellungen zurücksetzen

Putting Machine learning into production

Dieser Termin ist bereits beendet

17:00-18:00 Uhr
Ort: WebEx-Meeting
Studium Generale


In manufacturing, a typical way to ensure correctness of an assembled product is to execute a test at end of the manufacturing process that simulates behavior under real-world conditions. As these tests are time-intensive and prune to pseudo-errors, the stations running the tests often constitute a bottleneck in the assembly process, which is difficult to remove due to the high-dimensionality and the many possible component interactions of the underlying process step. In this talk, we present how we managed to speed up the testing procedure of our electronic stability programs (ESPs) using machine learning. Beside the training pipeline and infrastructure, we also shed some light onto the internal mechanisms of the feature engineering. When machine learning is deployed to production, many things can go wrong and we also present the obstacles and learnings we experienced when making our algorithms production-ready.

Meeting-Kennnummer: 121 363 5888

Meeting-Passwort: it_kolloq_ws2020




Dr. Tobias Windisch (Robert Bosch GmbH)


Studenten, Professoren, Mitarbeiter


Online bewerben für das Wintersemester 2021/22!

Die Bewerbungsphase für das Wintersemester 2021/2022 beginnt am 15. April 2021 und läuft bis zum 31. Juli 2021.
(Bitte beachten Sie die abweichenden Bewerbungszeiten für unsere internationalen Masterstudiengänge.)

Jetzt informieren