Module Description ME_402 Microprocessor Technology

Last update: November 7, 2016

Degree: Bachelor of Engineering

1	module no. ME 402	degree programme ATB/ETB/FTB	semester 4	starts in ⊠WS ⊠ SS	duration 1 Semester	mod typ mand	Эе	workload (h) 150	ECTS Credits 5
2	Klicken Sie hier, um Text einzugeben.		type of instruction		language	contac (SWS)		self-study (h)	ECTS Credits
	a) Microprocessor Technology		lectures with practice		english	3	40	50	3
	b) Microprocessor Technology laboratory		laboratory		english	2	20	40	2
3	table of qualifications		expertise		methodological skills			personal & social skills	
	knowledge & understanding		\boxtimes						
	applying knowledge & understanding								
	analysing & judging		\boxtimes		\boxtimes				
	acquiring & broadening								

4 learning outcome and competences

knowledge & understanding

The students

- know the structure and programming of commercially available microcontrollers using the example of a 32 bit microcontroller.
- know the hardware-related programming especially the use of bit-variables and registers.

applying skills

The students

- are capable of programming microcontrollers in the programming language C.
- are capable of looking for solutions of given exercises when working in teams.
- are capable of knowing the fields of application of microcontrollers.
- The students have gained methodological skills to independently acquire knowledge in the field of microprocessor technology from the sources/documents delivered by the manufacturers.

analysing and judging

- They are capable of knowing the application possibilities of microcontrollers.
- They are capable of analyzing problems incurred with microcontrollers and of working out methods of finding appropriate solutions.

acquiring and broadening skills

•

Module Description ME_402 Microprocessor Technology

Last update: November 7, 2016

Degree: Bachelor of Engineering

5 content

a)

- structure, functioning and programming of microcontrollers being commercially available on the example of an LPC1769 produced by NXP based on the 32-bit CortexM3
- The students gain basic knowledge of the structure and the operation mode of embedded microcontrollers based on ARM-CortexM3-series.
- They are capable of developing, programming and using microcontroller applications.
- They apply the professional development software by Arm/Keil and learn programming in C.
- The students learn the application of the most used peripheral modules (GPIO-Ports, A/D-converter, D/A- converter/ complex timer modules and simple interfaces (SPI/I2C).

b) tests:

writing and reading of digital signals with GPIO Ports using a LCD to display characters in an application interrupt technology for internal or external sources/signals analog/ digital and digital/ analog conversion signal generation and measurements with built-in timer units of microcontrollers application of simple communication interfaces (SPI/IEC)

6 Prerequisites

According to the study and examination regulation:

none

Recommended:

digital technology (TTL, CMOS technologies, A/D-converter, circuit networks, switch gears, meters, storage elements), basics of C-programming, calculating with hexadecimal and binary number systems

7 Type of assessment and requirements for credits

- a) written exam
- 8 Use of the module

Mandatory module in the bachelor study course ATB, ETB, FTB

9 Module director and other lecturers involved

Prof.-Dr.-Ing. Wolfgang Krichel, Prof.-Dr.-Ing. Bernhard Beetz

10 Literature

Data book: User-Manual LPC176x/5x, User manual UM10360, http://www.nxp.com (http://www.nxp.com/documents/user_manual/UM10360.pdf)
Lecture script of microprocessor technology of Esslingen University of Applied Sciences laboratory instructions of microprocessor technology of Esslingen University of Applied Sciences Yiu, J.: The Definitive Guide to the ARM Cortex-M3; Newnes-Verlag, 2007 http://www.arm.com/products/processors/cortex-m/cortex-m3.php

11 Contribution to the educational aims of the degree programme

Gaining specific mechatronical basics in the subject of microprocessor technology.

12 Last update:

07.11.2016