

System Design

1	Module Number 13571	Study Program ASM	Semester 1	Offered in XWS □SS	Duration 1 Semester	Module Type compulsory	Workload (h) 240	ECTS Points 8
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
					(SWS)	(h)	(h)	
	a) Automotive Systems Engineering		Lecture		4	60	120	English
	b) Software Eng	ineering	Lecture		4	60		

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can...

- ... analyze automotive systems bottom-up ...
- ... design automotive systems top-down or middle-out ...

Knowledge and Understanding

- ... know vehicle domains and their specific properties ...
- ... know mechatronic vehicle systems and their components ...
- ... know e/e architectures, bus systems and related terms ...
- ... know relevant terms and fundamental principles related to automotive systems engineering ...
- ... know the system engineering process with relevant intermediate steps and artifacts ...

Use, Application and Generation of Knowledge

Use and Transfer

- ... be able to classify systems engineering within the process landscape
- ... be able to describe the system in the problem and solution space and to apply procedures and methods to generate system engineering artifacts ...
- ... be able to create models for automotive systems and analyze them with respect to structure, performance and behavior ...

Scientific Innovation

- ... formalize systems engineering and system engineering artifacts ...
- $\bullet \qquad \dots \text{ enhance traceability, consistency and interoperability of system engineering artifacts} \ldots$

Communication and Cooperation

- ... use formal models to communicate within development projects ...
- ... increase reusability and automated generation of artifacts ...

Scientific Self-Conception/ Professionalism

• ... be able to contribute to professional engineering of automotive systems from a methodological and a technical point of view ...

Simulation and Control

1	Module Number 13572	Study Program ASM	Semester 1	Offered in XWS □SS	Duration 1 Semester	Module Type compulsory	Workload (h) 240	ECTS Points 8
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
					(SWS)	(h)	(h)	
	a) Microcontroller, Modelling and Simulation		Lecture + Lab		2+1	45	120	English
	b) Basic Control		Lecture		2	30		
	c) Advanced Control		Lecture		3	45		

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can...

Knowledge and Understanding

- ... understand and know the basic methods of modelling, system simulation and control engineering
- ... know how and where to use these methods in the development of automotive systems
- ... build up basic control loops using a small Microcontroller (e.g. Arduino)

Use, Application and Generation of Knowledge

Use and Transfer

- ... apply physical laws to derive mathematical system models in different domains (mechanical, electrical, thermal)
- ... apply methods of system simulation and control engineering in automotive applications
- ... analyze and evaluate the behavior of automotive systems and subsystems by use of simulation results
- ... develop small circuits with sensors and actuators and develop programs for Microcontroller, build up, test and calibrate control functions

Scientific Innovation

- ... use simulation and control engineering methods and tools to gain new insights into automotive systems or subsystems.
- ... create and optimize the behavior of automotive systems based on system models
- ... get acquainted with practical realization of the simulated problem in a microcontroller environment

Communication and Cooperation

- ... create, communicate and discuss technical information's in the area of the course subject
- ... communicate actively within an organization and obtain information.

Scientific Self-Conception/ Professionalism

- ... justify the solution theoretically and methodically to improve development methods.
- ... reflect and assess one's own abilities in a group comparison.

4 Contents

Lecture a): Automotive Systems Engineering

- Introduction to Systems Engineering
- Quick reference to Automotive Systems including:
 - o application domains powertrain, chassis, body, advanced driver assistance, infotainment
 - o mechatronic vehicle systems and their components
 - o E/E architecture, automotive bus systems, communication protocols
- Systems Engineering in the Process Landscape
- System Theory and Formalization
- Methodologies
- Examples

Lecture b): Software Engineering

- Introduction to Software Lifecycle Models
- Agile Software Engineering
- Requirements Engineering
- Model-based Software Engineering with UML
- Software Quality Assurance
- Versioning Control and Configuration Management
- Software Architecture
- Software Design
- Clean Code
- Continuous Integration and Delivery

5 Participation Requirements

compulsory: -

recommended:

- a) Simulink, Simscape and Stateflow Onramp Courses offered from Mathworks.
- b) Familiarity with one of the major programming languages, C/C++ preferred.

6 Examination Forms and Prerequisites for Awarding ECTS Points

Written Examination 120 min

7 Further Use of Module

Autonomous Systems, Propulsion Systems, Team Project, Master Thesis

8 Module Manager and Full-Time Lecturer

Prof. Dr.-Ing. R. Schuler, Prof. Dr.-Ing. M. Röhricht

9 Literature

- J. Schäuffele, T. Zurawka: Automotive Software Engineering. Springer, 2016
- R. Isermann, Mechatronic Systems Fundamentals, Springer, 2005
- R. Isermann, Automotive Control, Springer, 2022
- I. Sommerville, Software Engineering, Pearson, 2015

10 Last Updated

06.12.2023