

Propulsion Systems

1	Module Number	Study Program	Semester	Offered in	Duration	Module Type	Workload	ECTS
	13585	ASM	2	□ws Xss	1 Semester	compulsory	180 h	6
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
					(SWS)	(h)	(h)	
	 a) Dedicated Hybrid Engines including Controls 		Lecture / Exercise		1	15	90	English
	b) Control of Powertrains and Components		Lecture		2	30		
	c) Control Strategies		Lecture		1	15		
	d) Seminar Simulation		Seminar		2	30		

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can...

Knowledge and Understanding

- a) Dedicated Hybrid Engines including Controls
 - ...understand the function and construction of modern combustion engine control systems
 - ... know and understand concepts of supercharging including Miller-Cycle
 - ...know about torque based system structure, air-, fuel- and ignition paths
 - ...know and understand the possibilities of distribution of torque/power in hybrid powertrains
 - ...understand and explain the scope of functions for recuperation in electrified powertrains
- b) Control of Powertrains and Components
 - ...understand control loops for drive units and drive systems
 - ...understand and explain the functional scope of control devices in electrified drives
 - ...understand and explain the coupling of software and hardware
- c) Control Strategies
 - · ...identify and explain operating modes of hybrid vehicles
 - ...know and present operating modes of various powertrains
 - ...understand and evaluate operating strategies of electric- and hybrid vehicles in detail
 - · ...understand the interaction of components in the powertrain system to optimize consumption and emissions
- d) Seminar Simulation
 - ...understand structure and functionality of powertrain simulation models

Use, Application and Generation of Knowledge

- a) Dedicated Hybrid Engines including Controls
 - ... compare fuel consumption at different loads, speeds and ignition times
- b) Control of Powertrains and Components
 - ... design control of e-drives for electric and hybrid vehicles
 - ... evaluate concepts of electric drives
 - ... compare fuel consumption with different loads, speeds, ignition timings
 - ... calculate resulting speeds, torques, and powers for different powertrain types
 - ... based on the basic knowledge of common drive components, evaluate new drive structures in terms of essential properties such as performance, smoothness, package or costs

- c) Control Strategies
 - ...design and optimize operating strategies for different hybrid structures
 - ...recognize concept-related restrictions and evaluate operating quality
 - ...compare different operating strategies and evaluate them with regard to consumption, emissions, efficiency and range
- d) Seminar Simulation
 - ... make use of simulation tools to represent and evaluate interactions in drive systems

4 Contents

- a) Dedicated Hybrid Engines including Controls
 - Structure of electrical control loops, functions and software. Torque and power paths in hybrid drives, functions, software.
- b) Control of electrical and electrified powertrains
 - Structure and function of motor controls; components of motor controls: Sensors, actuators and control unit, structure and function of software, control strategies used.
- c) Control Strategies
 - Operating strategies, efficiency increase, emission avoidance, range increase, energy management in the vehicle
- d) Seminar Simulation
 - Powertrain simulation

5 Participation Requirements

compulsory: none

recommended: Prior knowledge of propulsion systems from lecture "Vehicle System Fundamentals"

6 Examination Forms and Prerequisites for Awarding ECTS Points

- a), b) and c) Written Examination 90 min (contributing 3/4 to the grade)
- d) Midterm (contributing 1/4 to the grade)

7 Further Use of Module

Master Thesis

8 Module Manager and Full-Time Lecturer

Prof. Dr.-Ing. Michael Auerbach, Prof. Dr.-Ing. Gregor Rottenkolber, Prof. Georg Mallebrein

9 Literature

- Reif, Konrad: Grundlagen Fahrzeug- und Motorentechnik im Überblick: Konventioneller Antrieb, Hybridantriebe, Bremsen, Elektrik und Elektronik; Bosch Fachinformation Automobil
- Robert Bosch GmbH (Hrsg.): Ottomotor-Management, Vieweg Verlag, 2006
- Robert Bosch GmbH (Hrsg.): Dieselmotor-Management, Vieweg Verlag, 2006
- U. Nuss: Hochdynamische Regelung von Drehstrommaschinen
- O. Zirn.: Elektrifizierung in der Fahrzeugtechnik Grundlagen und Anwendungen, Hanser-Verlag Leipzig 2017
- R. Fischer: Elektrische Maschinen. Hanser Verlag, München Wien 2011
- Peter Hofmann, Hybridfahrzeuge: Ein alternatives Antriebssystem für die Zukunft, Springer 2014

10 Last Updated

08.10.2024