

IT Fundamentals

1	Module Number 13574	Study Program ASM	Semester 1	Offered in XWS □SS	Duration 1 Semester	Module Type compulsory	Workload (h) 180	ECTS Points 6
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
					(SWS)	(h)	(h)	
	c) Data Structures and Algorithms d) Programmable Systems and Networks		Lecture		3	45	90	English
			Lecture		3	45		

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can ...

Knowledge and Understanding

- ... explain the architecture and workings of a modern computer
- ... understand the representation of items as data in computers
- ... explain the working of an operation system
- ... explain the challenges and solutions for communication between computers

Use, Application and Generation of Knowledge

Use and Transfer

- ... design an algorithm for a specific task
- ... implement an algorithm efficiently in an imperative programming language (C, Python)
- ... analyse the complexity of an algorithm
- ... choose a data structure suitable for a specific task
- ... analyse network communication
- ... choose types of network communication for a specific task
- ... consider the architecture of the computer and the operating system to implement a distributed system

Scientific Innovation

- ... use methods and tools to gain new insights in the field
- ... create software solutions to task at hand

Communication and Cooperation

- ... communicate actively within the lectures and obtain information.
- ... present technical contents and simulation results and discuss them with the class and the lecturer.
- ... communicate and cooperate within the group in order to find adequate solutions for the task at hand.

Scientific Self-Conception/ Professionalism

- ... present and justify the solution to given tasks theoretically and methodically
- ... take ideas and suggestions from other source into consideration

4 Contents

- a) Lecture: Data Structures and Algorithms
 - Number theory
 - Graph theory
 - Notation, design and classification of algorithms
 - Data structures: arrays, lists, sets
 - Complexity, efficiency, computability, O-notation
 - Search and sort algorithms
 - Programming in C
 - Programming in Python
- b) Lecture: Programmable Systems and Networks
 - Number and character encoding (range, resolution, overflows)
 - Architecture of computers
 - Architecture of CPU, memory and inputs/outputs
 - Overview of structure and tasks of an operation system
 - Types of operation systems
 - Processes and threads
 - Memory management
 - Inter-process communication and synchronization
 - File systems
 - Program execution
 - Network fundamentals and architectures
 - Addressing, media access (Ethernet, WLAN)
 - Local networks (IP)
 - Routing in networks
 - Transport protocols (TCP, UDP)
 - Application protocols

5 Participation Requirements

Compulsory:

none

Recommended:

- Discrete mathematics
- Basics of some programming language
- Computer handling

6 Examination Forms and Prerequisites for awarding ECTS Points

Written Examination 120 min

7 Further Use of Module

Automotive Communication

Usability and Dependability

8 Module Manager and Full-Time Lecturer

Prof. Dr. Dominik Schoop

9 Literature

- Brian W. Kernighan and Dennis M. Ritchie: The C Programming language, Prentice Hall, 2000
- Randal E. Bryant, David R. O'Hallaron: Computer Systems A Programmer's Perspective, Pearson, 2015
- Andrew S. Tanenbaum and Herbert Bos: Modern Operating Systems, Pearson, 2014
- James Kurose and Keith Ross: Computer Networking, Pearson, 2021

10 Last Updated

06.12.2023