In der gegenwärtigen Diskussion um einen neuen parteiübergreifenden und damit auf längere Sicht tragfähigen Konsens in der Energiepolitik ist die weitere Nutzung der Kernenergie der zentrale Streitpunkt. Mit Reaktoren, die noch sicherer sind als die bisher eingesetzten, wollen die Kernkraftbürgermeister die notwendige politische und öffentliche Akzeptanz für die Kernenergie zurückgewinnen, der gerade auch unter Klimaschutz- und Umweltgesichtspunkten besondere Bedeutung zukommt. Bei diesen künftigen Reaktoren, die bereits entwickelt werden, sollen die Folgen einer Kernschmelze – des zwar schon jetzt äußerst unwahrscheinlichen, aber nicht völlig auszuschließenden schwersten aller denkbaren Unfälle – auf den unmittelbaren Nahbereich der Anlage begrenzt bleiben. Nur bei einer langfristig verlässlichen Perspektive für die Kernenergie lassen sich die weiteren Entwicklungskosten für neue Reaktoren und spätere Bauentscheidungen wirtschaftlich rechtfertigen.

Mehr Akzeptanz durch neue Reaktoren?

Sicherheitssprung bei Kernkraftwerken angepeilt

- Martin Dehli

Neuer Druckwasserreaktor in europäischer Kooperation

Schwerpunkt der gemeinsamen Anstrengungen ist dabei – wie bereits angedeutet – die sicherheitstechnische Weiterentwicklung (Optimierung) des bewährten Druckwasserreaktors – ein "Evolutionär"-Konzept also, bei dem die Summe der sicherheits- und betriebsmäßigen Erfahrungen der vergangenen Jahrzehnte in Westeuropa genutzt wird.

> **"Evolutionär" Weiterentwicklung**

Das Ziel: Die in westlichen Kernkraftwerken bereits heute äusserst geringe Eintrittswahrscheinlichkeit einer Kernschmelze – also des schwerwiegendsten der denkbarer Störfälle – soll noch weiter vermindert werden. Und wenn es doch zur Kernschmelze kommen sollte, sollen die Auswirkungen auf den unmittelbaren Nahbereich der Anlage begrenzt bleiben, so dass selbst beim Versagen von Katastrophen-Schutzmassnahmen keine Gefahr für die Bevölkerung bestünde.

Andere Kraftwerkshersteller setzen dagegen auf grundlegende Neukonstruktionen von kleineren Leichtwasserreaktoren, tendieren also in die Richtung eher "Evolutionär"-Konzepte [1].

Adresse des Autors:
Prof. Dr. Martin Dehli, Fachhochschule für Technik, Eschbach, D-70736 Fellbach-Oeffingen.

Erschien in "Strom-Themen" (IZE, Frankfurt), Nr. 4/1993.
Neue Reaktoren

«Revolutionäre» Konzepte

Der Druckwasserreaktor AP-600 des amerikanischen Herstellers Westinghouse zum Beispiel soll sich durch eine verringerte Leistungsdichte im Reaktorkern und passive — also im Störfall von selbst arbeitende — sicherheitstechnische Elemente bei Störfällen besonders „günstig“ verhalten. Seine elektrische Leistung liegt bei 600 MW.

Hochtemperaturreaktoren

Als weiteres «revolutionäres Konzept» sei der Vollständigkeit halber noch die Weiterentwicklung des heliumgekühlten Hochtemperaturreaktors erwähnt. Bei diesen Varianten geht es darum, dass sie billiger, kleiner und vielseitiger sein sollen — und vor allem «smarťlicher».

Die konstruktiven Lösungen hierzu sehen eine geringere Energiebedarfe im Reaktorinneren sowie eine kleinere Leistung als die herkömmlichen Leichtwasserreaktoren vor.

Einer Weiterentwicklung stehen allerdings die bisher nicht immer ermutigenden Erfahrungen mit Demonstrationseinrichtungen (zum deutschen THTR-300 von Schmehausen und der amerikanischen Anlage von Fort St. Vrain) entgegen. Sie mussten nicht zuletzt aus technischen und wirtschaftlichen Gründen wieder stillgelegt werden. In der Diskussion um neue Kernkraftwerke spielt der HTR deshalb derzeit keine Rolle.

Sicherheitsverbesserungen beim europäischen EPR

Da – zumindest für Investitionsentscheidungen in den 90er Jahren – der EPR von Siemens/Framatome als Weiterentwicklung des Druckwasserreaktors der Favorit der grossen deutschen Energieversorgungsunternehmen und des staatlichen französischen Stromversorgungsunternehmens EdF ist, lohnt es sich, auf die dabei vorgesehenen sicherheitstechnischen Lösungen näher einzugehen.

Die Entwicklungsarbeiten liegen auf zwei Schwerpunkten:

- Die Wahrscheinlichkeit des Ausfalls sämtlicher Kühlkreisläufe, die bis zur Kernschmelze im Reaktorinneren führen könnte, soll noch weiter verringert werden.
- Der höchst unwahrscheinliche Fall einer Kernschmelze — wenn sie sich doch einmal ereignen sollte — soll beherrscht werden.

Noch höhere Zuverlässigkeit durch Vereinfachungen

Zur Verwirklichung des ersten Schwerpunktes ist vorgesehen, die Sicherheitssysteme in ihrer Zuverlässigkeit weiter zu verbessern — durch Vereinfachungen in Aufbau und Funktion. So soll zum Beispiel beim Notkühlsystem nicht mehr — wie bisher — je nach Anlagenzustand zwischen mehreren Ansaugleitungen umgeschaltet werden müssen.

Beiden heutigen Reaktoren ist für den Fall eines Kühlmittelverlustes nach dem Abriss einer Rohrleitung des Primärkreises zur langfristigen Kühlung eine «Sumpfumkühlung» erforderlich. Das ausgelaufene Kühlmittel (Wasser) wird am Boden des Sicherheitsbehälters — eines riesigen Behälters, der die Kühlkreisläufe umgibt — aufgefangen und von dort in die Kühlkreisläufe zurückgepumpt, wenn die ausserhalb des Sicherheitsbehälters lagernen Wasservorräte erschöpft sind. Dazu ist eine Umschaltanlage der Kühlsysteme von den äusseren Wasservorräten auf
den Sumpf (am Boden des Sicherheitsbehälters) erforderlich.

Beim EPR dagegen wird das Notkühlfon-
ser von vornherein im Gebäudesumpf des
Sicherheitsbehälters gelagert, wohin das aus-
laußende Kühlmittel auch zurückfließt. Eine
Urschaltung, bei der – wenn auch nur in
seltenen Fällen – ein Fehler auftreten könnte,
is damit nicht mehr erforderlich.

Strikte räumliche Trennung

Für die Beherrschung von Störfällen wer-
den beim EPR – wie schon bei bisherigen
Anlagen – vier voneinander unabhängige Si-
cherheitssysteme vorhanden sein. Um beim
Ausfall eines der vier Systeme eventuelle
Folgeschäden bei einem der drei anderen zu
vermeiden, werden sich im neuen EPR die
Sicherheitssysteme jeweils in vier völlig vonei-
inander getrennten Raumsegmenten be-
finden. Jede Sicherheitssystem wird zu
eigenen, großzügig bemessenen Wasservor-
räten, ausreichende Pumpleistung sowie eine
eigene, über Notstromdiesel zusätzlich abge-
sicherte Stromversorgung zur Verfügung
stehen. Damit soll mit noch höherer Zuver-
lässigkeit als bisher erreicht werden, dass bei
teintretenden Störungen nie alle Sicher-
heitseinrichtungen auf einmal funktions-
unfähig werden.

«Rückenstützung» im Notfall

Sollte dieser sehr unwahrscheinliche Fall
nochmals eintreten, ist beim EPR für Störfälle
die Nutzung von Komponenten (z.B. Pump-
en) angestrebt, die auch im Normalbetrieb
eingesetzt werden. Im Störfall stehen diese
sogennannten Betriebssysteme dann gewisser-
massen als «Rückenstützung» für eventuell
ausgefallene Sicherheitssysteme zur Verfü-
gung. Wenn also zum Beispiel in einem Stö-
fell die Kühlmittelpumpen aller vier Sicher-
heitssysteme wirklich einmal ausgefallen
sein sollten, könnte immer noch die normale
Nachkühlpumpe dafür sorgen, dass der Reaktorkern ausreichend gekühlt wird.

Aufgrund der strengen Sicherheitstheo-
rie war man bisher davon ausgegangen,
dass Systeme für den Normalbetrieb bei Si-
cherheitseinschränkungen überall nicht be-
rücksichtigt werden dürfen. In der Tat wer-
den sie aber in vielen Fällen durchaus noch
zur Verfügung stehen.

**Sichere Beherrschung
der Kernschmelze**

Für den zweiten Sicherheitsschwerpunkt –
die sichere Beherrschung der Kernschmelze –
müssen vielfältige und aufwendige Gegen-
maßnahmen vorgesehen werden. Dabei muss zum Beispiel vermieden werden, dass
der entstandene 3000 °C heiße Brei aus flüs-
igen radioaktiven Substanzen, die aus dem
dann zerstörten Reaktordruckbehälter ausge-
treten sind, nicht auch noch die Bodenplatte
der Sicherheitsumschichtung – des Contain-
ments – durchbricht.

Dafür ist vorgesehen, dass sich die
Schmelze auf einer Fläche von 150 m² aus-
breitet und von oben mit Wasser gekühlt
werden kann. Diskutiert wird noch darüber,
ob von unten über ein weiteres Kühlsystem
Wärme abgeführt werden müsste. Die Bodenplatte, auf der sich der Brei ausbreitet
soll, wird mit einer hermetischen, hoch-
leistungsfähigen Schutzschicht bewehrt.

Ein weiteres Ereignis, gegen das Vorsor-
ge getroffen werden soll, ist die unkontrolli-
te Detonation einer Wasserstoff-Blase,
die sich bei der Reaktion von Wasser mit
heißen Zirkon bilden kann. Aus diesem Metall
bestehen nämlich die Brennlement-
Hüllrohre. Dafür ist ein zweistufiges Sicher-
heitsverfahren vorgesehen. Solange die
Wasserstoff nur in geringer Konzentration
vorhanden ist, sollen Katalysatoren dafür
sorgen, dass er sich in einer chemischen Re-
aktion mit Sauerstoff wieder zu ungefähr-
lchemem Wasser verbindet. Bei höherer Kon-
zentration ist dann mit einem speziellen Zün-
der ein kontrolliertes Abbrechen innerhalb
der Sicherheitsbehälter möglich.

Darüber hinaus werden noch weitere Re-
aktionen untersucht, die bei einer Kern-
smelze möglich wären. So könnte zum
Beispiel bei verhältnismäßig niedrigem
Druck im Primärkreislauf eine Dampfexplo-
sion auftreten, wenn die geschmolzenen
Kernmassen mit dem im Reaktordruckbe-
hälter verbliebenem Wasser in Berührung
kommen.

Untersuchungen, die zurzeit noch vertieft
werden, lassen jedoch erwarten, dass die
dabei freigesetzte Energie nicht ausreicht, um
den Sicherheitsbehälter zu zerstören.

Literatur

[1] Kernenergie – die nächsten Schritte. Tagungs-
band der SVA-Informationstagung vom 22./23. Oktob-

L’énergie nucléaire sera-t-elle mieux acceptée grâce à de nouveaux réacteurs?

Une amélioration de la sécurité des centrales nucléaires est recherchée

L'utilisation future de l'énergie nucléaire constitue le centre de la controverse dans
l'actualité discussion relative à un nouveau consensus durable en politique énergétique.
Grâce à de nouveaux réacteurs encore plus sûrs, les partisans du nucléaire tiennent à
regagner la sympathie des politiciens et du public pour l'énergie nucléaire; cette
dernière présentant aussi de sérieux avantages du point de vue de la protection du climat
et de l'environnement.

Ces nouveaux réacteurs, qui sont en cours de développement, seront en mesure de
limiter à l'environnement immédiat de l'installation les conséquences d'une fusion du
cœur, accident majeur qui, bien qu'étant pour l'heure déjà quasi inévitable, ne
peut être entièrement exclu. Seule une perspective à long terme fiable pour l'énergie
nucléaire justifiera, du point de vue économique, les frais dus aux recherches sur de
nouveaux réacteurs et les décisions de les construire.