Module DDM 4210 - Vibration and Acoustics 2

1	Module Number 4210	Study Programme DDM	Semester 2	Offered in ☐WS ⊠SS	Duration 1 Semester	Module Type compulsory	Workload (h) 120	ECTS Points 4
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
					(SWS)	(h)	(h)	English
	a) Vibrations		Lecture		2	30	60	
	b) NVH in Automotive Systems		Lecture		1	15		
	c) Computer-Aided Vibration Analysis		Virtual Lab		1	15		

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can...

Knowledge and Understanding

- Explain the basic procedure of the setup of multiple degree of freedom (MDOF) models and understand the connections to NVH behaviour of automotive systems.
- Understand and explain the calculation of MDOF modal properties and mode shapes and the modal superposition method on example of MDOF Frequency Response Functions; fundamentals of plain wave and spherical wave models in acoustics with special focus to sound intensity.

Use, Application and Generation of Knowledge

Use and Transfer

- Apply matrix calculation methods to calculate modal properties and mode shapes; apply experimental modal analysis methods; apply CAE and CAT methods on MDOF systems.
- Analyse MDOF models by computational and experimental methods; analyse sound intensity of a sound field
- Calculate MDOF models with Matlab and Finite Elements.

Scientific Innovation

• Develop concepts for the optimization of NVH behaviour of automotive components by computational and experimental modal methods.

Communication and Cooperation

- Interpret the results of modal analyses and draw admissible conclusions.
- Present results of modal analyses and discuss them.
- Communicate and cooperate within the group in order to find adequate solutions for the task at hand.

Scientific Self-Conception/ Professionalism

- Justify the solution theoretically and methodically.
- Reflect and assess one's own abilities in a group comparison.

4 Contents

- c) Vibrations: Introduction to the basic theory of vibrations; practical application to typical structural noise and shake problems; principles of Fourier analysis and order tracking; multiple degree of freedom systems.
- d) NVH In Automotive Systems: Definition of NVH; acoustic and vibration problems in vehicle systems.
- e) Computer-Aided Vibration Analysis: Simulation of practical vibration problems (CAT).

5 Participation Requirements

Compulsory: Basic knowledge in dynamics. Mathematics: Linear differential equations. 4204 Vibrations and Acoustics 1. Recommended: Vibrations and Acoustics 1 exam passed

6 Examination Forms and Prerequisites for Awarding ECTS Points

Written exam, 90 minutes, graded

Laboratory reports and tests, not graded

Hochschule Esslingen University of Applied Sciences

7	Further use of Module				
	NA NA				
ļ					
8	Module Manager and Full-Time Lecturer				
	Prof. DrIng. Joachim Berkemer				
9	Literature				
	Lecture Documents;				
	Ewins, D.J.: Modal Testing. Theory and Practice. New York: John Wiley and Sons. Argyris, J.; Mlejnek, HP.: Computerdynamik der Tragwerke. Braunschweig, Wiesbaden: Friedr. Vieweg Verlag				
	Further textbook references will be given in the lecture				
-					
10	Last Updated				
	02.04.2019				