Module DDM 4201 – Numerical Methods in CAD

1	Module Number 4201	Study Programme DDM	Semester 1	Offered in ⊠WS □SS	Duration 1 Semester	Module Type Compulsory	Workload (h) 120	ECTS Points 4
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
					(SWS)	(h)	(h)	English
	a) CAE Methods and Algorithms		Lecture		2	30	60	
	b) Numerical Mathematics		Lecture		2	30		

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can ...

Knowledge and Understanding

- Understand the basics of mathematical concepts within the framework of the topics in section 4
- Have advanced knowledge of engineering mathematics and numerical methods in particular
- Understand the relevance of mathematics for mechanical engineering

Use, Application and Generation of Knowledge

- Apply mathematical concepts within the framework of the topics in section 4
- Decide whether a solution is plausible or not
- Analyse advanced problems of mechanical engineering and work out mathematical solutions

Communication and Cooperation

- Make use of the knowledge, abilities and competences in order to evaluate a given application problem
- Communicate within a team to work out a solution to a given problem

Scientific Self-Conception/ Professionalism

- Justify a solution methodically
- Assess their abilities in comparison to their fellow students

4 Contents

- Advanced topics of matrix calculus
- Analysis of functions of several variables (especially optimisation)
- Iterative methods for solving linear equation systems
- Power series, Taylor series, Fourier series
- Nonlinear equations and nonlinear equation systems
- Numerical methods for initial value problems of ordinary differential equations

5	Participation Requirements
---	----------------------------

Compulsory: Mathematics from the bachelor studies

6 Examination Forms and Prerequisites for Awarding ECTS Points

Written examination (90 mins); graded

7 Further Use of Module

Compulsory module for DMM studies

8 Module Manager and Full-Time Lecturer

Prof. Dr. rer. nat. Axel Stahl

Hochschule Esslingen University of Applied Sciences

9 Literature

- Lecture notes (provided for download)
- Koch-Stämpfle, Mathematik für das Ingenieurstudium, Hanser Verlag
- Mohr, Numerische Methoden in der Technik, Grenzwert Verlag
- Weller, Numerische Mathematik für Ingenieure, Vieweg Verlag
- O'Neil, Advanced Engineering Mathematics, Cengage Learning
- Kreyszig, Advanced Engineering Mathematics, Wiley

10 Last Updated

02.04.2019