Module DDM 4205 - Integrity of Structures

1	Module Number 4205	Study Program DDM	Semester 1	Offered in ⊠WS □SS	Duration 1 Semester	Module Type compulsory	Workload (h) 180	ECTS Points 6	
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language	
					(SWS)	(h)	(h)	English	
	a) Integrity of Stru	a) Integrity of Structures		Lecture with Laboratory		40	110		
	b) Failure Analysis:		Lecture with Laboratory		2	30			
3	 Once the module has been successfully completed, the students can Knowledge and Understanding Understand the advanced methods to evaluate the operational safety and integrity of engineering/car structures un static and cyclic loading Understand and explain the procedure for a life-time-assessment of components under variable amplitude loading. Basic knowledge about fatigue behaviour under complex multiaxial loading Understand principles and methodology of failure investigation Explain typical failure patterns and failure modes of engineering structures Understand reasons, characteristics and types of failures. Use, Application and Generation of Knowledge Use and Transfer Apply the concepts for an experimental and theoretical life-time-assessment for cyclically loaded components to realifie-problems Apply fracture mechanics to cracked structures under quasistatic and cyclic loading Calculate the life time until fatigue failure using commercial software programs Analyse failed specimen in terms of failure using commercial solutions for remedies Create solutions how to prevent failures 								
								ents to real-	
	 Improve the design of engineering structures in order to improve their safety and reliability. Communication and Cooperation Interpret the results of the component safety and lifetime and draw admissible conclusions. Use the learned knowledge, skills and competences to evaluate the safety and integrity of engineering components and structures. Communicate and cooperate within the group in order to find adequate solutions for the task at hand. Scientific Self-Conception/ Professionalism Derive recommendations for decisions concerning the safety of components under service loading and their release on the basis of the analyses and evaluations learnt. 								
4	 a) Integrity of Structures: Advanced concepts for the life time assessment under variable amplitude loading: Nominal stress concept for cyclic loading. Structural stress concept for cyclic loading, local stress concept for cyclic loading, local strain concept for cyclic loading, fracture mechanics concept Application of numerical tools for the life time prediction Selected topics / ongoing research topics: e.g. very high cycle fatigue (VHCF); fatigue behaviour of composite materials; Influence of edge conditions on fatigue behaviour, multiaxial fatigue Laboratory exercises: Non-destructive testing, experimental determination of material and component flow curve, Neuber' Law, Masing behaviour, local stress-strain loops, test drives with strain gauges, collecting data for load time history, numeri 							loading, naterials; rve, Neuber`s	
	 life time assessment Failure Analysis: Historical failures, typical failures at car structures, reason for failures, concepts for component optimization, definition and classification of failures, methods of failure analysis, characteristics of failures under static and cyclic mechanical, thermal and chemical loading, practical case studies and exercises 								

Module DDM 4205 - Integrity of Structures

5	Participation Requirements					
	Compulsory: Fundamentals of strength of materials; fundamentals of engineering mechanics and material science Mathematics: Basic knowledge of statistics					
	Recommended: Module Strength of Materials 1, Module Strength of Materials 2 or Precourse Strength of Materials / Integrity of Structures					
6	mination Forms and Prerequisites for Awarding ECTS Points					
	Written exam, 120 minutes, graded					
	Lab reports and lab tests, not graded					
7	Further use of Module NA					
8	Module Manager and Full-Time Lecturer					
	Responsible: Prof. DrIng. Peter Häfele					
	Lecturer: Prof. DrIng. Peter Häfele, Prof. DrIng. Lothar Issler					
9	Literature					
	Lecture Documents					
	Dowling, N. E.: Mechanical Behavior of Materials.4 th edition, Pearson, 2012					
	Lee, Y., Barkey, M. E., Kang, H.: Metal Fatigue Analysis Handbook: Practical Problem-solving Techniques for Computer-aided Engineering, 1 st edition, Butterworth-Heinemann, 2011					
	Bannantine, J. A., Comer, J. J., Handrock, J. L.: Fundamentals of Metal Fatigue Analysis, Prentice Hall, 1997					
	Collins, J. A., Failure of Materials in Mechanical Design. Analysis, Prediction, Prevention. John Wiley & Sons, 1993					
	Hertzberg, R. W.: Deformation and Fracture Mechanics of Engineering Materials, John Wiley and Sons, 2012					
	Brett, Mc L.: Handbook of Failure Analysis of Materials in Mechanical Design: Identification, Prediction and Prevention, Auris, 1 st edition, 2013					
	ASM-Handbook. American Society for Metals. Metals Park Ohio					
Vol. 9: Metallography and Microstructure. Vol. 10: Failure Analysis and Prevention						
	Vol. 10. Failure Analysis and Prevention Vol. 12: Fractography					
	Vol. 19: Fatigue and Fracture					
	/ulpi, D.J.: Understanding How Components Fail. American Society for Metals. Metals Park, 3 rd edition, 2013					
10	Last Updated					
	02.04.2019					