Module DDM 4203 – Advanced Strength of Materials

1	Module Number 4203	Study Programme DDM	Semester 1	Offered in ⊠WS □ SS	Duration 1 Semester	Module Type compulsory	Workload (h) 180	ECTS Points
2	Courses		Teaching and Learning Forms		Contact Time		Self-Study Time	Language
	a) Lightweight Design b) Advanced Finite Element Method		Lecture Lecture with Laboratory		(SWS) 4 2	(h) 60 30	(h) 90	English

3 Learning Outcomes and Competences

Once the module has been successfully completed, the students can ...

Knowledge and Understanding

- Understand the sequence of a linear finite element analysis.
- Understand in depth the concept of nodes, integration points and interpolation functions.
- Understand the influence of various factors on the lightweight potential of a structure.

Use, Application and Generation of Knowledge

Use and Transfer

- Apply the finite element method to analyse the deformation and stress/strain state of a structure.
- Apply lightweight design concepts in relation to materials and shapes.
- Analyse the failure behaviour of technical sandwich structures.

Scientific Innovation

- Optimize sandwich structures for minimum weight under different side conditions.
- Improve the weight-to-load ratio of structures.

Communication and Cooperation

- Interpret the results of a numerical simulation and a lightweight optimization and draw admissible conclusions.
- Present technical contents and discuss them.
- Communicate and cooperate within the group in order to find adequate solutions for the task at hand.

Scientific Self-Conception/ Professionalism

- Justify solutions theoretically and methodically.
- Reflect and assess the abilities of group members.

4 Contents

- a) Lightweight Design: Principles and objectives of lightweight design; One-dimensional members (Bars and Beams); Plates and shells; Stability problems; Selected examples of lightweight design
- b) Advanced Finite Element Method: Theoretical background of FEM, fundamental equations, numerical accuracy and convergence, applications and influence of boundary conditions, nonlinearity (material); lab exercises

5 Participation Requirements

Compulsory: Fundamentals of strength of materials, materials science, engineering mechanics, design and finite element method Recommended: NA

6	Examination	Forms and	Prerequisites	for Awarding	ECTS Points
---	-------------	-----------	----------------------	--------------	--------------------

Advanced Strength of Materials: Written exam, 120 minutes, graded

Advanced Finite Element Method: Individual semester project, not graded

7 Further use of Module

NA

Hochschule Esslingen University of Applied Sciences

8 Module Manager and Full-Time Lecturer
Responsible: Prof. Dr.-Ing. Andreas Öchsner
Lecturer: Prof. Dr.-Ing. Andreas Öchsner, D.Sc.

9 Literature
Lecture Documents; textbook references will be given in the lecture

10 Last Updated
18.04.2021