Name of module:	Ride and Handling
Keywords:	Ride, Handling, Suspension Control Systems, Multibody Dynamics, Suspension SDi
Modulenumber:	ASM 223
Target group(s):	2. Semester ASM
ECTS-Credits:	8
Language of instruction:	english
Module owner:	Prof. Erich Schindler

Extent of work (hours)

Workload	Contact hours	Self study	Exam preparation
240	120	90	30

Prerequisites:	
	 undergraduate course in mechanics (especially planar kinematics and kine- tics of rigid bodies)
	 fundamentals of automotive engineering including principles of chassis de- sign
	 linear algebra including fundamental matrix calculus and eigenvalues
Total target:	
	 Ability to develop an understanding of theory and methods in vehicle dynamics, with the focus on ride and handling properties Ability to apply scientific tools to the development of computer simulation models Ability to estimate the effect of changing model parameters on ride and handling criteria Ability to analyze the performance characteristics for ride and handling
Module content:	 terminology of vehicle handling, control loop "driver-vehicle-environment", demands on vehicle handling, planar kinematics of vehicle motion, linear (bicycle) model, under- and oversteer, steady state and transient test pro- cedures, handling characteristics under normal driving conditions, analysis and discussion of vehicle dynamics and vehicle handling including a des- cription of the tire, nonlinear model, yaw velocity damping characteristics, effects of design parameters and the road/tire friction coefficient on handling performance
	 terminology in multibody dynamics, kinematics of free bodies, force and tor- que elements, play and friction, Newton-Euler equations, constraint functi- ons, joints and linkages, flexible bodies, structure and functionality of multi- body codes, types of analysis, introduction into MSC.ADAMS, application in suspension modeling and simulation for ride, handling on uneven roads, and load case generation for durability
	 Lab projects: development of a simple multibody simulation blockset in Si- mulink, modeling and analysis of double wishbone and McPhersion suspen- sions in MSC.ADAMS, full vehicle simulations in MSC.ADSAMS/Car

Reference material:	 Schindler, E.: Lecture Notes Vehicle Dynamics Schindler, E.: Fahrdynamik – Grundlagen des Lenkverhaltens und ihre Anwendung für Fahrzeugregelsysteme. expert verlag, 2007 Gillespie, T.D.: Fundamentals of Vehicle Dynamics. SAE Zomotor: Fahrwerktechnik: Fahrverhalten Vogel Verlag, 1987 Wong: Theory of Ground Vehicles. SAE Gipser, M.: Lecture Notes Multibody Systems Nikravesh, P. E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall 1988 MSC:ADAMS Documentaion and Tutorials
Offered:	Summer term only

Submodules and assessment

Title of submodule	Handling
Type of instruction / form of learning:	Lecture
ECTS-Credits:	4
Hours per week:	4
Aims, learning outcomes:	 to understand the linear vehicle model describing the dynamics in lateral direction to become familiar with the steady state and transient test procedures to become familiar with the directional control response characteristic to develop an understanding of vehicle dynamics and vehicle handling to understand the nonlinear behavior of vehicle dynamics to understand the relationship between vehicle design parameters and the handling characteristics
Type of assessment:	final written examination 90 min

Title of submodule	Suspension Modeling
Type of instruction / form of learning:	Lecture
ECTS-Credits:	4
Hours per week:	4
Aims, learning outcomes:	 to learn the fundamentals of multi-body dynamics to understand the principles of related software to learn to assess and efficiently apply MBS software for vehicle dynamics simulations to become familiar with ADAMS and ADAMS/Car (including practical working
	 with ADAMS) to understand the concepts of detailed suspension modeling to use ADAMS/Car and COSIN/mbs for full vehicle simulations
Type of assessment:	final written examination 90 min